Image Visual Realism: From Human Perception to Machine Computation.
نویسندگان
چکیده
Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.
منابع مشابه
Reduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملHuman perception in computer vision
Computer vision has made remarkable progress in recent years. Deep neural network (DNN) models optimized to identify objects in images exhibit unprecedented task-trained accuracy and, remarkably, some generalization ability: new visual problems can now be solved more easily based on previous learning. Biological vision (learned in life and through evolution) is also accurate and generalpurpose....
متن کاملHuman Perception in Computer Vision / Conference Submissions
Computer vision has made remarkable progress in recent years. Deep neural network (DNN) models optimized to identify objects in images exhibit unprecedented task-trained accuracy and, remarkably, some generalization ability: new visual problems can now be solved more easily based on previous learning. Biological vision (learned in life and through evolution) is also accurate and generalpurpose....
متن کاملDynamic face recognition: From human to machine vision
As confirmed by recent neurophysiological studies, the use of dynamic information is extremely important for humans in visual perception of biological forms and motion. Apart from the mere computation of the visual motion of the viewed objects, the motion itself conveys far more information, which helps understanding the scene. This paper provides an overview and some new insights on the use of...
متن کاملMachine Perception and Description of Pictorial Data
This investigation of machine processing of picto rial data is based on the premise that people can recognize visual objects and describe them well enough so that other individuals can recognize the object from the description. Given a system of linguistic communi cation between a person and a digital computer, and given that the computer possesses adequate perceptual machinery, many currentl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on pattern analysis and machine intelligence
دوره شماره
صفحات -
تاریخ انتشار 2017